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Resumen Una red dindmica es conocida como red periédica cuando
se compone de enlaces que se conectan y desconectan periédicamente.
Trabajos anteriores han tratado el problema teniendo en cuenta sélo
tiempos discretos. En contrapartida, el presente trabajo utiliza las mis-
mas funciones objetivo que estos trabajos, considerando por primera vez
el tiempo continuo, ademéas de una variabilidad en el tiempo que dura
cada era (lapso de tiempo entre dos cambios de topologia). El trabajo
modela el problema en un contexto multi-objetivo y propone el uso de
un Algoritmo Evolutivo Multi-Objetivo (el Strength Pareto Evolutionary
Algorithm), implementado y luego comparado con respecto a los prin-
cipales algoritmos del estado del arte como: DSDV, DSR, AODV, EG
Shortest y EG Foremost, demostrando en las simulaciones que seria el
preferido en un contexto puramente multi-objetivo que considera siete
funciones objetivo: tiempo de viaje y tiempo de vida (promedio, varianza
y peor caso), asi como cantidad de saltos promedio.

Keywords: Grafo evolutivo, redes dindmicas, redes periédicas, optimi-
zaciéon multi-objetivo, solucién preferida.

1. Introduccién

Una red dindmica es conocida como red periédica cuando se compone de en-
laces que se conectan y desconectan con un intervalo regular de tiempo, conocido
como periodo (T) [1]. Para transmitir un paquete de datos se necesita un camino
desde el nodo fuente (remitente) hasta el nodo destino (destinatario). En el ca-
mino, existen nodos intermedios que actian reenviando el paquete hasta llegar
al destino. Si un nodo intermedio estd ausente en un momento dado, el nodo
predecesor debe almacenar el paquete hasta que el enlace entre ellos se active, o
tomar la decisién de cambiar el camino, segiin sea la politica de encaminamiento.

Las redes arriba citadas se analizan usando un formalismo para representar
la conectividad de una red en cualquier instante, conocido como Fvolving Graph
(EG) [10], [11]. Un EG puede entenderse como una secuencia indexada de sub-
grafos que representan la configuracién de la red en cada era e, como ilustra la
Figura 1, donde por ejemplo, el enlace entre los nodos A y B solo esté presente
en la tercera y la décima era de cada ciclo (o periodo) que dura 15 eras.
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Figura 1. Grafo evolutivo que representa la topologia de una red pequena, donde en
cada enlace se identifica las eras en la que se encuentra activo

Las redes periddicas han llegado a ser muy ttiles en el modelado de redes de
comunicacion. Por citar algunos ejemplos, se las utiliza en el estudio de Satéli-
tes de Orbita Baja (Low Earth Orbit - LEO), redes de sensores, redes méviles
del tipo ad-hoc (MANET) [8], asi como en el proyecto One Laptop Per Child
(OLPC) que utiliza este modelado con un fin educativo [4], entre otras aplica-
ciones posibles.

2. Contexto del trabajo

Este trabajo sigue la linea de investigaciéon propuesta por Yael y Baran [16],
[17], donde se aborda el problema de encaminamiento en redes dindmicas pe-
riddicas, modelandolo como un problema multi-objetivo. En dichos trabajos,
Yael y Baran proponen un algoritmo evolutivo multi-objetivo, capaz de hallar
un conjunto de soluciones Pareto éptimas [12], que no sélo encuentra individuos
competitivos con respecto a las soluciones calculadas por otros algoritmos del
estado del arte, sino que ademés logra calcular individuos que dominan (en el
sentido Pareto [5]) a las soluciones calificadas como éptimas, cuando una sola
funcién objetivo es considerada. Aqui corresponde recordar que una solucién
multi-objetivo es mejor que otra (o la domina) si no es peor en ningin objetivo
y es estrictamente mejor en al menos un objetivo [5]. Trabajos anteriores [10],
[11], [16] solo consideran la duracién de las eras como una variable discreta ¢ y
no asignan un valor especifico en segundos a dicha variable. Esto resulta en que
las soluciones son comparadas, entre otras formas, por la cantidad de eras trans-
curridas y, por lo tanto, dichos trabajos asumen implicitamente que la duracién
en segundos de dos eras cualesquiera, es siempre la misma.

Los trabajos [10], [11], [16] utilizan Grafos Evolutivos que permiten imple-
mentar el concepto de camino (o viaje) compuesto por pares ordenados < n, e >,
donde n es un nodo y e una era en la que el nodo se encuentra conectado a la red.
El presente trabajo propone por primera vez asignar a cada era una duracién
en segundos, considerando para ello un proceso aleatorio pues en la mayoria de
los casos précticos este valor no es necesariamente constante [3]. De esta forma,



la misma era en ciclos distintos puede tener una duracién ligeramente diferente
al ser considerada como una variable aleatoria. Esto permite simular diferencias
en la duracién de las eras, debido por ejemplo a margenes de error en los crono-
gramas o fendmenos atmosféricos que impactan sobre la conectividad real de la
red al momento efectivo de su utilizacién.

Al realizar simulaciones considerando eras cuyas duracién es aleatoria, se
espera que las soluciones del Algoritmo Evolutivo Multi-objetivo sean mejores en
comparacion a las soluciones tradicionales utilizando algoritmos mono-objetivo
presentados en los trabajos de referencia [16], [17].

3. Simulaciones

3.1. Simulador

Siguiendo la linea propuesta en [16], [17], este trabajo modifica el simulador
desarrollado por los autores en dichos trabajos de forma a considerar tiempos fisi-
cos (medidos en segundos) para cada era. Recordando que el tiempo de duracién
de una era es una variable aleatoria, esta aleatoriedad es representada mediante
el uso de diferentes escenarios que reflejen el azar. Esto es, un escenario es una
realizacion concreta de valores que puede ir tomando cada era durante el tiempo
que dure una simulacion. Estos escenarios pueden ser generados en forma alea-
toria a partir de una funcién de distribucién de probabilidad, como se hace en
este trabajo, u obtenerse a partir de datos histéricos o incluso ser propuestos
por un experto.

Cabe destacar que en las simulaciones que se presentaran se considera que los
paquetes siempre llegan a destino dado que si el enlace deja de estar disponible
en una era, los paquetes todavia no enviados pueden ser calendarizados para
ser transmitidos en el siguiente ciclo, dado que la red tiene una periodicidad T
asegurada y no se consideran restricciones en los nodos.

3.2. Funciones objetivo

Trabajos anteriores [16], [17] han calculado un conjunto de soluciones épti-
mas teniendo en cuenta la optimizacién de varias funciones objetivos como: la
cantidad promedio de saltos efectuados por los paquetes para llegar al nodo des-
tinatario, la cantidad promedio de eras vividas por los paquetes hasta que todos
ellos culminan su camino y la cantidad promedio de eras durante las cuales los
paquetes viajan a través de la red hasta llegar a destino [16]. Este trabajo uti-
lizara las mismas funciones objetivo de modo a comparar las simulaciones y los
resultados obtenidos. La cantidad de saltos mide cuantos enlaces fueron atrave-
sados por un paquete para llegar desde el nodo remitente hasta el nodo destino;
el conjunto de caminos mas cortos es el calculado con el algoritmo de Dijkstra
[10]. El tiempo de vida es el tiempo transcurrido desde que se crea un paquete
para ser enviado, hasta que llega a su destino. El tiempo de wviaje es el tiempo
transcurrido desde que un paquete efectivamente sale del remitente y hasta que



llega al destinatario. Es decir, no se considera el tiempo transcurrido entre que
se crea un paquete y se inicia su transmisién efectiva. Notar que el tiempo de
vida es igual al tiempo de viaje mas el tiempo de espera.

Debido a que cada algoritmo se simulara sobre N escenarios que caracteri-
zaran la distribucién de probabilidad de las variables aleatorias del problema
considerado, surgen nuevas alternativas al definir las funciones objetivo a partir
de las arriba descritas. Para este trabajo se ha decidido trabajar con el promedio,
varianza y peor caso para las funciones objetivo que consideran tiempos, dando
como resultado siete funciones objetivo: fi: promedio de la cantidad de saltos,
fo: peor caso del tiempo de viaje, f3: promedio del tiempo de viaje, f4: varianza
del tiempo de viaje, fs: peor caso del tiempo de vida, fs: promedio del tiempo
de vida y f;: varianza del tiempo de vida.

3.3. Entorno de simulaciéon

Los algoritmos evaluados en las simulaciones que siguen son los utilizados en
[16], [17]: Destination-Sequenced Distance-Vector (DSDV) [13], Dynamic Source
Routing (DSR) [9], Ad-hoc On-Demand Distance Vector (AODV) [14], Fvolving
Graph Shortest (EG Shortest), [10] y Fvolving Graph Foremost (EG Foremost)
[10], ademas del Strength Pareto Fvolutionary Algorithm (SPEA) [18], utilizando
los siguiente parametros en las simulaciones: cantidad de individuos por gene-
raciéon = 10, cantidad méxima de individuos en la poblacién externa = 1000,
probabilidad de cruzamiento = 0.5 y probabilidad de mutacién = 0.25.

El simulador originalmente programado en Ruby [16] fue adaptado para si-
mular el funcionamiento de los algoritmos en la red periédica de la Figura 1. Las
simulaciones fueron ejecutadas en una maquina con un procesador Intel Core
i5, 2.27 GHz y memoria RAM de 6.00 GB. La duraciéon de las simulaciones,
dependiendo del conjunto de escenarios utilizados fueron variando desde algu-
nas horas, varios dias y hasta un poco mas de una semana. Cabe destacar que
en general los algoritmos mono-objetivo necesitaron un tiempo de simulacién
considerablemente menor al SPEA.

Las pruebas que se presentan a continuacién se realizaron utilizando la red
periédica de la Figura 1. Al comenzar una simulacién, lo primero que se hace
es generar la cantidad de escenarios que se necesite. En la Tabla 1 se puede ver
un ejemplo de una matriz generada para un escenario correspondiente a la red
antes mencionada (Figura 1), donde cada fila representa un ciclo (letra C), cada
columna representa una era (letra e) y cada casilla representa la duracién en
segundos, recordando que en una red periddica cada ciclo tiene un nimero cons-
tante de eras; por ejemplo, en la Tabla 1, los 5 ciclos analizados estdn compuestos
de 15 eras, cada uno.

Todas las pruebas fueron realizadas sobre cuatro escenarios distintos que
fueron generados al comenzar la simulacién. Al considerar cuatro escenarios ya
se tiene una razonable variedad de datos distintos, haciendo que la simulacién
pueda ser viable en cuanto a recursos y tiempo consumido. Una mayor cantidad
de escenarios es logicamente preferible pero requeriria un tiempo de ejecucién
mayor, como asi también una cantidad de recursos muy grande para la realidad



Tabla 1. Ejemplo de escenario, donde E representa una era y C representa un ciclo

‘ ‘el e2 e3 ed edb eb6 e7 e8 €9 el0 ell el2 el3 eld eld

C1[0,15 0,14 0,22 0,18 0,27 0,15 0,14 0,22 0,18 0,27 0,15 0,14 0,22 0,18 0,75
C2[0,16 0,18 0,20 0,12 0.17 0,16 0,19 0,20 0,12 0.17 0,16 0,18 0,20 0,16 0.71
C3[0,44 0,29 0,26 0,27 0.15 0,24 0,29 0,26 0,27 0.18 0,24 0,29 0,26 0,27 0.15
C4[0,10 0,16 0,16 0,10 0.23 0,10 0,16 0,16 0,10 0.23 0,10 0,16 0,19 0,10 0.23
C5(0,29 0,20 0,23 0,26 0.29 0,29 0,20 0,23 0,24 0.29 0,29 0,20 0,23 0,26 0.29

concreta en que se realizé este trabajo. Para determinar la duracién de cada era
se utilizé una distribucién de probabilidad triangular, escogida empiricamente
de forma a lograr que los paquetes lleguen razonablemente a destino.

En lo que sigue, se asume que el tiempo que tarda en viajar un paquete de
un nodo a otro es de 100 milisegundos (es decir 0,1 segundos). Las pruebas se
realizaron con un trafico que contenia 31 paquetes que se van creando dentro de
la red ilustrada en la Figura 1. Para una red de este tamano se puede asumir
que se trata de un tréfico bastante congestionado. Entonces, de manera a que
varios paquetes no puedan ser enviados dentro de una misma era por falta de
tiempo, se definié que las eras duraban entre 0,1 y 0,3 segundos. De este modo
se puede ver como se comportan los algoritmos simulados a medida que las eras
y por ende los ciclos, van avanzando en el problema ejemplo presentado. En el
caso de que un paquete no pueda ser enviado en una era debido a que el tiempo
de la era finaliza, se lo calendariza para ser enviado en la misma era pero en el
siguiente ciclo. De esta manera, todos los paquetes en algiin momento llegaran
necesariamente a su destino final para la red dindmica de la Figura 1.

3.4. Esquema de simulacién

En la Figura 2 se puede apreciar el esquema a seguir en las simulaciones,
donde las siglas utilizadas son: (N) niimero méximo de escenarios, (F,) un esce-
nario de los N posibles, (AB) enlace del nodo A al nodo B, (AC) enlace del nodo
A al nodo C, (S,,) una solucién SPEA de las m posibles, (FO) funcién objetivo,
(t) tiempo medido en segundos, ademads de utilizar las siglas correspondientes a
cada algoritmo arriba mencionado.

En primer lugar se utiliza la distribucién de probabilidad para los escenarios,
con la cual se van generando los N escenarios que se necesitan para empezar la
simulacién (pasos 1 y 2 de la Figura 2). Luego, el esquema de simulacién se di-
vide de acuerdo al tipo de algoritmo a simular (pasos 3 y 4 de la Figura 2). Para
los algoritmos mono objetivo primeramente se tiene como entrada un escenario
para luego probar la solucion encontrada sobre cada uno de los N escenarios con-
siderados. Como resultado de las simulaciones sobre los N escenarios se pueden
calcular las 7 funciones objetivo para cada algoritmo, las que luego son compara-
das para conformar un conjunto de soluciones no dominadas (Pareto dptimas).
El algoritmo multi-objetivo SPEA realiza cada iteracion sobre los N escenarios,
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Figura 2. Esquema de simulacion

para dar como resultado un conjunto de soluciones no dominadas en una so-
la corrida del algoritmo. Cada solucién légicamente tiene sus correspondientes
funciones objetivo debidamente calculadas.

Por 1ltimo, las soluciones de los algoritmos mono-objetivo y las soluciones del
SPEA son comparadas entre si para evaluar si forman parte del conjunto final
de soluciones no dominadas (paso 5 de la Figura 2). De esta forma, se obtiene
un conjunto de soluciones no dominadas que permite realizar un analisis final,
el cual se explica en la siguiente seccion.

4. Resultados experimentales

Las pruebas fueron realizadas de manera a ir comparando el algoritmo SPEA
con los demés algoritmos mono-objetivo. Se hicieron pruebas del SPEA con 5,
20, 40, 100, 300 y 1000 iteraciones ya que el SPEA, al ser un algoritmo evolutivo,
itera hasta que converja a un razonable conjunto de soluciones no dominadas.

Una vez terminada una simulacion, se comparan los resultados de los algorit-
mos mono-objetivo para tener un conjunto de soluciones no dominadas. Debido
a la gran cantidad de funciones objetivo que se calculan para cada solucion,
resulta muy dificil que una solucién de un algoritmo en particular domine a to-
das las otras soluciones [15]. Entonces, para estos casos donde se tienen varias
funciones objetivo, se puede utilizar la Relaciéon de Preferencia introducida por
Drechsler et al. en [7] quienes utilizaron un algoritmo previamente propuesto en
[6] para resolver un problema de multiples objetivos. Dicho algoritmo utiliza una
relacién de preferencia para comparar soluciones no dominadas entre si [15]. La
relacion de preferencia define que, dadas dos soluciones x y x’, se dice que x es



Tabla 2. Conjunto de soluciones no dominadas encontradas al resolver el problema
ejemplo de la Figura 1

Algoritmo| f1 fa fs fa fs fe Iz ‘

1.DSDV 1,677 8,935 10,387 0,819 25,613 28,758 4,389
3.DSDV  [1,677 8,935 10,266 1,008 25,613 28,637 4,024
17.EGs 1,677 5,516 9,266 5,780 21,968 22,935 0,936
20.EGs 1,677 6 8,661 2,985 20,516 22,330 2,619
22.SPEA  [1,935 11,258 11,379 0,043 24,516 26,330 1,565
32.SPEA (2,007 10,677 11,645 0,351 21,71 25,097 6,204
34.SPEA (2,129 12,387 13,113 0,202 21,806 27,008 11,869
37.SPEA  [1,839 7,226 10,250 3,321 19,29 22,677 6,205

preferida a x’ si y sélo si x tiene una mayor cantidad de objetivos mejores que
x’.

Dentro de todas las simulaciones realizadas [2], a continuacién sélo se presen-
ta una simulacién especifica tomada como ejemplo para analizar los resultados
obtenidos. En esta simulacién en particular, el algoritmo SPEA sélo fue iterado
20 veces. Una vez que el simulador ejecuté todos los algoritmos antes menciona-
dos sobre los cuatro escenarios, resulta un conjunto de soluciones no dominadas
que se pueden apreciar en la Tabla 2. En dicha tabla cada columna f representa

una funcién objetivo conforme fuera definido al final de la seccién 3.2.

Tabla 3. Comparacién del nimero de funciones objetivo en que una solucién es mejor
que la otra, considerando sélo las soluciones no dominadas.

1.DSDV 3.DSDV 17.EGs 20.EGs 22.SPEA 32.SPEA 34.SPEA 37.SPEA S

1LDSDV  *t  1(N) 2(N) 2(N) 2(N) 3(N) 2(N)  3(N) o0
3DSDV  3(P)  *  o(N) 2(N) 2(N)  3(N) 2(N)  3(N) 1
17.EGs  A(P)  4(P)  **  2(N) A(P)  3(N)  3(N)  3(N) 3
20EGs  4(P) A(P) 4(P) **  3(N)  4(P)  3(N) 5(P) 5
922.8PEA 5(P) 5(P) 3(N) 4(P) @ ** A(P)  6(P) 3(N) 5
32.8PEA  4(P) 4(P) 4(P) 3(N) 3(N) o 5(P)  3(N) 4
34.SPEA 5(P) 5(P) 4(P) 4(P) 1(N)  2(N) o 3(N) 4
37.SPEA  4(P)  4A(P) 4(P) 2(N) 4(P)  4(P)  A(P) g

Luego, con las soluciones no dominadas de la Tabla 2 se crea una matriz de
comparacion de las funciones objetivo de cada solucién (ver Tabla 3), donde se
compara en cuantas funciones objetivo la solucién de una fila es mejor que la
solucion de una columna. Asi, al aplicar la Relacién de Preferencia se asigna
el valor (P) si la solucién de la fila es preferida a la solucién de la columna y
el valor (N) si la solucién de la columna es preferible a la solucién de la fila.
Para identificar cual seria la solucion preferida entre todas las soluciones no
dominadas, se puede por ejemplo contar las veces que una soluciéon ha sido la



preferida sobre otras; es decir, los valores P para cada fila, lo que se muestra
en la columna ‘S’ de la Tabla 3. Finalmente, se puede notar que la solucién
preferida bajo este criterio seria la solucion ‘37.SPEA’ por tener el valor més
alto (6) en la columna ‘S’.

Tabla 4. Relacién de preferencia entre las soluciones no dominadas elegidas para
realizar el grafo de la Figura 3.

2.DSDV 3.DSDV 17.EGs 18.EGs 19.EGs 20.EGs 138.SPEA 234.5PEA

2DSDV M (P (V) (V) (N) (V) (M) (P)
3.DSDV  (N) ooy Ny (V) (N) (V) (N)
17EGs  (P) (P) * (P) 0 (P) (V) (N)
18EGs  (P)  (P) (N) * (N) 0 (V) (N)
19EGs  (P)  (P) 0 (P) * (P (V) (N)
20.ECGs  (P) (P) (N) 0 (N)  w (V) (P)
138.8PEA  (P) (P) (P) (P) (P) (P) ok 0
934.SPEA (N} (P) (P) (P) (P) (N) 0 +*

2DSDV  17EGs 18EGs 19EGs 20.EGs 234.SPEA

Figura 3. Grafo de relacion de preferencia correspondiente a la Tabla 4, donde la
solucion no dominada ‘138.SPEA’ se encuentra en el primer nivel de la clasificacion,
quedando asi demostrado que es la solucién preferida.

Alternativamente, la seleccion de la solucion preferida puede hacerse utilizan-
do una técnica mas formal como un Grafo de Relacion de Preferencia [15]. Para
ilustrar este concepto, la Figura 3 presenta el Grafo de Relacion de Preferencia
correspondiente a la Tabla 4, similar a la Tabla 3 que resulta de otra simulacion
que obtuvo 110 soluciones no dominadas que por un tema de espacio y didéctica
solo se presenta parcialmente. En efecto, la Figura 3 muestra que la solucién
‘138.SPEA’ es preferida a todas las demas soluciones por lo que se encuentra en
el primer lugar de la clasificaciéon (Rank 1); luego se observa que seis soluciones



colapsan en un solo nodo (Rank 2) debido a que todas ellas resultan preferi-
das a al menos una solucion de este conjunto, existiendo al menos una solucién
del conjunto que es preferida a la solucién considerada; es decir, al graficar las
relaciones de preferencia entre estas seis soluciones se encontrara al menos un
ciclo. Finalmente, se puede observar que la soluciéon ‘3.DSDV’ en ningin caso es
preferida a pesar de ser no dominada, por lo que queda ltima en la clasifica-
cién (Rank 3). Cabe destacar que la eleccién de una solucién calculada por el
algoritmo SPEA como preferida en el ejemplo no es una simple casualidad dado
que consistentemente la soluciones preferidas siempre fueron calculadas por el
SPEA corriendo un niimero suficientemente grande de iteraciones.

5. Conclusién

La primera contribucién de este trabajo es el simulador implementado que
permite incluir al tiempo continuo en las simulaciones y que incluso cuenta con
la posibilidad de utilizar diversos escenarios para modelar la incertidumbre.

Experimentalmente se comprobé que algunos algoritmos como el AODV,
DSR y EG Foremost no son buenos para resolver el problema en cuestion, dado
que no han sido capaces de encontrar soluciones no dominadas. En contraparti-
da, se demostré experimentalmente que algunos algoritmos como el DSDV y el
EG Shortest son razonablemente buenos (atin siendo algoritmos mono-objetivo)
dado que lograron encontrar soluciones no dominadas, aunque estas soluciones
no lleguen a ser las soluciones preferidas. Por lo tanto, si no se tiene acceso a sufi-
cientes recursos computacionales como para utilizar un algoritmo multi-objetivo,
estos dos algoritmos serian los recomendables.

Cabe destacar que por primera vez se propone la utilizacion de la Relacién de
Preferencia [15] para comparar el gran nimero de soluciones no dominadas en-
contradas en el problema estudiado. Asi, se demostré que mediante esta Relacién
de Preferencia se logré identificar la solucién no dominada preferida del conjunto
de soluciones Pareto éptimas, incluso al considerar un niimero considerable de
funciones objetivo, siete en este caso.

Como principal aporte de este trabajo, se aportan datos experimentales que
concluyentemente indican que un algoritmo de ruteo que considere un contexto
multi-objetivo (en este caso el SPEA) es claramente superior a los algoritmos
del estado del arte, tipicamente mono-objetivo, para redes periddicas de tiempo
continuo en contextos de incertidumbre. Como trabajo futuro los autores se
encuentran experimentando con otros algoritmos multi-objetivos, diversas redes
periédicas y variados conjuntos de escenarios.
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