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Abstract

As the number of conflicting objectives increases, multi-objective optimisation problems (MOPs) be-
come harder to solve; reflecting this difficulty, they even receive the name of many-objective problems.
Today, these difficult problems are mainly solved with evolutionary algorithms as the Non-dominated
Sorting Genetic Algorithm (NSGA). This paper proposes the use of Particle Swarm Optimisation based
algorithms for solving many-objective problems presenting evidence regarding the feasibility of the pro-
posal.
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1. Introduction

In multi-objective optimisation problems (MOPs), conflicts among objectives usually prevent from having
a single optimal solution but rather a set of trade-off solutions known as Pareto optimal set [1, 2].

In the last years, it has been pointed out that the difficulty of MOPs increases for many-objective
problems, i.e. problems having 4 or more objectives [1, 3]. In Pareto-based algorithms, these difficulties are
intrinsically related to the fact that as the number of objectives increases, the proportion of non-dominated
elements in the populations grows, being increasingly difficult to distinguish among solutions using only the
dominance relation [2, 4]. Additionally, several algorithms are based on data structures with complexities
that grow exponentially in the number of objectives and other factors [3, 5.

Once an algorithm finds a Pareto set, a decision maker selects a solution from this optimal set. This
decision making is beyond the scope of this paper, which is limited to the steps required to obtain a good
approximation to the Pareto optimal set. At this stage, visualization of solution alternatives becomes very
important. Although several methods have been proposed to this aim [6], there is a lack of a simple and
intuitive way to represent solutions in objective space with more than three objectives [1].

As the number of objectives grows, the following phenomena becomes evident:

e Pareto-based algorithms as the well established NSGA are unable to provide the required selection
pressure towards better solutions in order to conduct an efficient evolutionary search [1, 2].

e For a given set of solutions, as the number of objectives m increases, the expected growing of the domain
space proportion e containing the points that the Pareto dominance classifies as non-comparable is given
by the following expression:

2m — 2
=22 &
Note that lim e = 1. This phenomena indicates that Pareto dominance may be inadequate to dis-

m—r0o0
criminate among solutions in many-objective problems [1, 4].
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In the following sections important concepts for understanding of MOPs are introduced. Also, this
work illustrates the feasibility of using MOPSO for solving many-objective problems. Therefore, two multi-
objective algorithms are described, first NSGA-II [7] and then, two variants of MOPSO [5, 8]. In Section 5,
a complexity analysis on the mentioned algorithms is shown while in Section 6 our experimental tests are
described and results are presented. Finally, in Section 7, conclusions and future work are depicted.

2. Multi Objective Optimisation

Problems addressed in this paper are mainly many-objective. Usually, these problems have conflicting
objectives and solving them is not a trivial task. Often, when dealing with more than one objective, the need
of selecting a solution among a set of non-comparable solutions arises, because a single optimal solution may
not exist.

Definition 1 Multi-objective optimisation problem [1]: Let F be a set of m objective functions { f1, fo, -, fm}, fi :
R™ = R, a MOP is defined as:

Optimise (Maximise/Minimise) y = F(z) = (fi(x), fo(x), -+, fm(x))
x = (r1,22, - ,xy) € X CR" (2)
Yy = (ylayZa"' 7ym) S y ng

subject to
n) <oi<a)Vie (1,2, n} )

9(x) = (g1(2), g2(), - - , g(x)) < 0 (4)

x is a vector of n decision variables, while y represents an m-dimensional objective vector. Constraints (3)
represent 2n variable bounds that help to define the decision variable space or decision space X. Objective
functions constitute a multi-dimensional space called the objective space, termed as ). Vector g is composed
of k constraint functions (4) which shape the feasible region. Solutions that do not satisfy constraint functions
and/or variable bounds are called infeasible solutions, while solutions that meet all constraints (3) and (4)
are feasible solutions. The set of all feasible solutions Xy is known as the feasible region. The domain of
each f; is Xy. For each solution x € Xy there exists a point y in the objective space. This Xy defines the
feasible objective space V:

Vi=Fxp) = |J{F@) (5)

J?E.)(f

As previously stated, problems with m > 4 are called many-objective; otherwise, they are simply referred
to as multi-objective optimisation problems.

In a feasible set of solutions Xy, given 2 solutions u,v € &, It is said that u Pareto dominates, or simply
dominates v (denoted as w > v) if it is not worse in any objective and it is strictly better in at least one
objective [1, 2].

Definition 2 Pareto Optimal set. For a given MOP the Pareto Optimal set, denoted as P*, is defined as
the set of non-dominated feasible solutions, i.e.:

P*={x € Xf|# 2’ € X such as 2’ = x}

Definition 3 Pareto Optimal Front. For a given MOP the Pareto Optimal Front, denoted as PF™*, is defined
as the image in objective space of the Pareto set P*, i.e.:

PF* ={y = F(z) € Yflr € P*}
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Algorithm 1: Fast Non-dominated Sort, responsible of the m(2NN)? complexity of the algorithm.

input : P
foreach p € P do
Sp = 0; np = 0;
foreach ¢ € P do

if p > q then

‘ Add g to set Sp of solutions dominated by p;

else if ¢ = p then np =np +1
if np = 0 then p ., = 1; F1 = F1 U {p}
i=1;
while F; # 0 do
Q=20 // Used to store members of the next front;
foreach p € F; do

foreach p € Sp do
ng =ng — 1;
if ng =0 then g =i+ 1; Q =QU {q}
P=i4 1 Fy = Q;

3. NSGA-II

The reference algorithm in current literature for solving MOPs with evolutionary algorithms is un-
doubtedly the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [1, 7]. This algorithm depicts a
fast non-dominated sort procedure to classify individuals in a set of candidate solutions called population in
several non-dominated fronts (Algorithm 1).

Additionally, NSGA-II presents a crowding distance value d; to preserve diversity. It implements a
crowded-comparison approach using another method called crowding distance assignment. It depends in a
new operator called crowded-comparison operator (<) which defines a partial order as follows:

Z'-<nj<:>(./_"i<ﬂ)\/(f¢:.ﬁ/\di>dj) (6)

where F; is the front containing solution i [7].

In evolutionary algorithms as NSGA-II, a set of candidate solutions is known as population. In the main
loop of NSGA-II, a parent population P, and another offspring population are combined into a set R; and
then separated in several non-dominated fronts F;. Afterwards, every generated front is assigned a crowding
distance until the new population P;1; grows to the population size limit N. Eventually, elements of the next
unused front are sorted to complete the population. Finally, a new offspring population Qsy1 is generated
[7].

Regarding complexity, according to the analysis given in by Deb et al. [7], the complexity of the operations
in one iteration are:

1. non-dominated sorting: time complexity on the order of m(2N)? because of the two nested loops used
to divide the population in non-dominated fronts, and the comparison of solutions (Algorithm 1).

2. crowding distance assignment: since it has to sort m times, and the complexity is given by the sorting
algorithm, the overall time complexity is on the order of m(2N)log(2N).

3. sorting on <,: time complexity on the order of 2N log(2/N). Each sort produced in a front is given by
the sorting algorithm.

The overall complexity of the algorithm is therefore on the order of m(2N)?2, which is governed by the non-
dominating sorting part of the algorithm. It is shown in Sections 5 and 6 that iterating over a population of
2N has considerable impact on execution time.

4. MOPSO

4.1. Particle Swarm Optimisation

The Particle Swarm Optimisation meta-heuristic (PSO), developed by Kennedy and Eberhart in 1995 [9],
is inspired in social behaviour of individuals like bees and birds, which perform a collective zone exploration
looking for food or guiding the swarm or flock to desirable locations. PSO basically consists in an iterative
algorithm having a group of individuals called swarm, in which each individual called particle explores the
decision space looking for optimal solutions.
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In a n-dimensional decision space, each particle 7 in the swarm knows its current position x;—[x;,, Zi,, - , Z;,],
its current velocity v; = [viy, Vi, -+ ,v;,] which led it to its current position, and the best position it has
been p; = [piy, Piys -+ 5 Pi, | called best personal position. Additionally, all other particles are aware of the
best position found by the entire swarm g = [g1, 92, - , gn] called global best position.

At every iteration t, every component j of the position and the velocity is updated for each particle i as
follows:

vfjH =w X vfj + Cq x rand() x (p;?j - xvfj) + Cy x rand() x (gfj - xf]) (7)
wift =+ (8)

where w is the inertia parameter, Cy is called the cognitive parameter, Cy is the social parameter and rand()
is a procedure that returns a random value in [0, 1].

Equation (7) is used to update the velocity of the i-th particle from its current velocity, the euclidean
distance to its best personal position, and the euclidean distance to the best global position.

In (8), position vector components belonging to the i-th particle are updated using the updated velocity.
The use of distances in (7) is to achieve an “attraction” for the particle towards both its personal best
position and the global best position. This distances are called cognitive factor and social factor respectively.
Parameters C and Cy are constants that determine how accelerated is the particle towards the mentioned
factors [9], defining the maximum influence of these factors in (7). In a similar fashion, rand() is used to
define the real influence of such factors. The final outcome is the preservation of diversity.

The inertia parameter w introduced by Eberhart and Shi [10] is used to command the impact of the
previous velocities in the calculations for the next value. w manages the balance between the global and
personal decision space exploration [11]. Big values of w lean toward exploring new areas (exploration), but
small values are in favour of searching areas close to the current position (ezploitation). It is usual to limit
the growth of the velocity by defining a maximum value vy [11]. After calculating the new velocity, it is
moderated:

if v > Vmax then v;; = vyax (9)
else if v;; < —vpax then v;; = —vpax
Finally, if the position reaches the limit of the feasible decision space X, it is normally “bounced” in the
opposite direction on the component that reached the limit. This ensures that every solution found in the
iteration process will be inside the feasible set of solutions.

4.2. Particle Swarm Optimisation in Multi-Objective Problems

Adapting the PSO algorithm to optimize a multi-objective problem requires a modification of the concept
of better personal position and best global position. Since having conflicting objectives result in non-
comparable solutions, now the algorithm must handle a best personal repository for every particle and a
global best repository as well. An adaptation to the PSO algorithm to solve MOPs is known as Multi Ob-
jective Particle Swarm Optimisation (MOPSO) [12]. In this Section two variants of MOPSO are briefly
presented.

4.2.1 Moore and Chapman (1999)

Moore and Chapman [5] introduced a method in which every particle stores a best personal repository
for every non-dominated positions it has visited. This version is simply referred to as MOPSO in this work.
A global best repository is maintained as well, storing the non-dominated positions visited by the entire
swarm. To calculate a new velocity, every particle selects a random element from its personal repository to
use in (7) as best personal position. Similarly, a random element of the global repository is selected to use
as global best position.

As complexity is concerned, it is clear that, for every iteration, going through every component on the
decision space to calculate in the first loop drives on the order of N? complexity. Also, comparing non-
domination in the best particle selection is on the order of M. Therefore, the overall complexity is MN?2.
Note that spatial complexity (or memory needs) increases due to storing a personal repository for each
particle resulting in an overall spatial complexity on the order of nN (NN + 1) (Algorithm 2).
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Algorithm 2: Moore y Chapman’s MOPSO with complexity on the order of mN?Z.

input : w, Cq, Co, vmax, N
for i =1to N do

Initialize the i-th particle with a random velocity and position;
eval(i);

Update the personal repository if the i-th particle (P;);
Update the global repository (G);

while not stop-condition() do

for i =1to N do

Select best personal position (random element in P;);
Select best global position (random element in G);
Calculate new velocity for the i-th particle (eq. 7);

Limit velocity components to vmax (eq. 9);

Calculate a new position for the i-th particle (eq. 8);
Update position to constraints if necessary;

for i =1to N do

eval(i);

Update the personal repository if the i-th particle (P;);

Update the global repository (G);

Return non-dominated-solutions(G);

4.2.2 Coello and Lechuga (2002)

Coello and Lechuga [8] presented a version of MOPSO in which a fixed size repository stores every non-
dominated solution found by the swarm in the exploration process. That repository employs an adaptive
mesh scheme in which the explored space is represented in bounded regions called hypercubes. In this work,
this version is referred to as MOPSO_CL.

FEach hypercube is given a score equal to dividing a constant number like 10 by the total number of
non-dominated solutions contained by it [12]. Such score is later used to select the best global position
from the repository, which is updated in every iteration, inserting every non-dominated solution found by
the swarm and removing the ones that prove to be dominated by the new solution. If the repository is full
while inserting a new solution, a solution is removed from the hypercube containing the largest number of
solutions. In Algorithm 3 the procedure for assigning solutions to hypercubes is shown.

Algorithm 3: Assign Solutions to Hypercubes using MOPSO_CL, with complexity on the order of ng,™.

input : G, ngj,,m
qtyHypercubes = n;,
H = initialize hypercubes(qtyHypercubes);
for i = 1 to m do

max; = 1 getmax( G; );

min; = 1 getmin( G; );
for i =1 to m do
max; —min;

] ndiv — L
min; —amp; |

amp; =

ini; =
for i =1 to |G| do
for i = 1to |G| do

‘ j = Calculate index for particle %;

insert-particle-in-hypercube (H [j],G[i]);

for i = 1 to gtyHypercubes do update-calif (H [i])

Regarding the complexity of this version, it is clear from the last loop that it is on the order of ng,™.

5. Complexity Analysis

The complexity analysis was performed taking into account the original definition of the algorithms
[5, 7, 8]. In what follows, a summary based on algorithms presented in Sections 3 and 4 are illustrated.
These results are completely congruent with the ones proposed by the authors:

e NSGA-II: On the order of m(2N)?, as stated in Section 3.
e MOPSO: On the order of mN?, as stated in Section 4.2.1.
e MOPSO_CL: On the order of naiv", as stated in Section 4.2.2.

Considering that this work is mainly interested in many-objective problems (m may be very large), experi-
ments with MOPSO_CL are not presented due to its exponential growth in m. However, it is worth noting
that this complexity is given by the hypercube administration (see Algorithm 3). Therefore, an adaptation of
MOPSO_CL is suggested to take advantage of a sparse matrix representation for many-objective problems.
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Let the relation U be:

complexity (NSGA) m(2N)* 4 (10)

complexity (MOPSO) ~ mN?2

It is clearly expected that MOPSQO’s execution time be around 4 times faster than NSGA-II’s; therefore,
it may be a good idea to use MOPSO to solve many-objective problems. To validate this statement, in the
following section our experimental tests are shown.

6. Experimental Results

To validate the complexity analysis presented in Section 5, the following experiments was performed:
varying m (dimension of objective space), n (dimension of decision space), N (population size limit) and E
(evaluation limit), execution time is compared.

Being taopso and tnsaa execution times for NSGA-II and MOPSO respectively, the improvement ratio
7 is calculated as follows:

t
_ NSGA (11)
IMOPSO
This clearly means that, for a given configuration, if 7 > 1, MOPSO is faster than NSGA-II.

6.1. Environment

3.000 parameter combinations where executed: N € {100,200, ---,1000} for population size limit, m €
{4,6,8,10, 12} for number of objectives, n € {14,15,16,17,18,19} for decision space dimension, and finally
E € {1000, 2000, - - - ,10000} for number of executions of the objective functions, used as stop criteria.

Both algorithms were used to solve the same problem: DTLZ1 [13]. Once these executions where finished,
correlations for every parameter of the mentioned variables and 7 were calculated.

6.3. Execution Times

Table 1: Average execution times with 3.000 executions.
algorithms | Execution time (seconds)
NSGA-II 35.087

MOPSO 3.063

T 11.455

As expected, 7 > 1 in every performed test, proving the feasibility of using MOPSO with many-objective

problems.
The hardware used in this experiments is an Intel® Core™i7 CPU 970 @ 3.20 GHz with 12 GB RAM

and running Fedora 20.
In the rest of this section, correlations for each variable are presented to show the impact of each variable

in execution times.
6.3. Correlations

The influence that each variable has over execution times are studied by analyzing the correlations
between 7 and each variable. Correlations are shown in Table 2.

Table 2: Experimental Correlations

Variable | Correlation | Comment favoured algorithm
Pr.N 0.796 Strong influence of N MOPSO
Prm 0.257 Weak influence of m MOPSO
Prn —0.912 Strong influence of n NSGA-IT
pr.E 0.787 Strong influence of £ MOPSO

From the calculations, it is clear that increasing N, m and F lean towards using MOPSO for solving
many-objective problems. However, when increasing n NSGA-II still looks as a right choice, although it is
worth noticing that large values of n naturally increases F.
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7. Conclusions and Future work

With the presented evidence, it is clear that MOPSO is a feasible alternative for solving many-objective
problems. Given the considerable difference in execution times in the studied algorithms, it does not seem
reasonable to limit the number of executions of the objective function as stop condition.

As future work, authors are working on performing quality measurements (not presented in this work);
analysing the complexity of other algorithms; and correlating other variables’ impact in quality of the gen-
erated approximation solution set.
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